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I. INTRODUCTION

Theories with extra dimensions have long played a role in attempts to unify other forces

with gravity [1]. Traditional ideas about hiding extra dimensions involved making them

compact and small [2] (generally assumed to be of the order of the Planck length [3]), so

that propagation of standard model matter in the extra dimensions requires energy of the

inverse of the size of the extra dimensions. Thus, if the extra dimensions are small enough,

they e�ectively decouple from the low-energy theory.

The mechanism of con�ning standard-model �elds on (3 + 1)-dimensional subspaces (3-

branes, or just branes) [4] of a higher-dimensional manifold leads to the possibility of sce-

narios with large extra dimensions. In models where the spacetime geometry is of a simple

factorizable form, the space of extra dimensions (the bulk) may be compact and perhaps as

large as a millimeter [5]. If the spacetime geometry has a nonfactorizable form, the extra

dimensions may be warped and noncompact as in the work of Randall and Sundrum [6]. The

possibility of warped noncompact extra dimensions has extended our intuition about how

extra spatial dimensions are manifest in four-dimensional e�ective �eld theories by showing

that even if gravity propagates in non-compact higher dimensional spaces, four-dimensional

observers may still empirically deduce a four-dimensional Newton's law.

There has been a great deal of recent activity studying various aspects of cosmology

in large extra dimension scenarios. Nonetheless, model building is still in its infancy and

general features are still being uncovered. As a contribution to this e�ort, we examine here

whether these large extra dimension scenarios possess an analog of the \atness problem"

existing in four-dimensional Friedmann{Robertson{Walker (FRW) cosmology. We �nd that

there is most likely a higher dimensional atness problem of character signi�cantly di�erent

from that of the FRW atness problem. Furthermore, unlike the atness problem in an

FRW cosmology, we will argue this problem is not easily solvable by ination.

We do not present our analysis in the context of any concrete realistic model. As there

is no uni�ed theory that can address the question of initial conditions, our conclusions

necessarily must be based on certain (plausible) assumptions. It is impossible to know if the



fundamental theory will somehow naturally circumvent the diÆculty we discuss. Also, we

only address the issue of large (even in�nitely extending) extra dimensions. We know that

if the extra dimensions are macroscopic, e�ective �eld theories will be valid to describe the

spacetime behavior and the calculations should be reliable.

In the rest of the Introduction, we shall lay out the assumptions under which our argu-

ments apply. However, we �rst discuss the FRW atness problem in a way that most closely

parallels the atness problem of large extra dimensions.

One way of viewing the FRW atness problem is as a �ne-tuning problem, associated with

the fact that if the equation of state obeys �+3p > 0, any deviation from spatial atness in

the early universe would, in a few expansion times, cause the universe either to collapse or to

expand and become negative curvature dominated. Even an initial condition of exact atness

is problematic since spatially at patches much larger than Planck size are unnatural because

the Planck scale sets the energy scale associated with quantum gravitational uctuations

early in the universe. That is, even if the universe were initially globally FRW and perfectly

spatially at, any uctuations would have destabilized spatial atness early on, especially

when the curvature of the spacetime was large enough for quantum gravitational uctuations

to be large.

Note that even without introducing the issue of quantum gravitational uctuations there

is the question of why the universe chose zero spatial curvature over a region that is much

larger than the Planck scale to such a large degree of accuracy. There seem to be two

options: (i) the FRW universe was nucleated by some quantum cosmological process to have

exactly zero spatial curvature, or (ii) the FRW universe arose from a Planck-size at patch

which inated to become our universe. The �rst of these options is possible, but not under

computational control. The second of these options, usually referred to as ination, is under

computational control. The attraction of ination, besides computational control, is that

a physical mechanism to generate a large at patch out of a tiny at patch simultaneously

solves other cosmological �ne-tuning problems. It should be noted that even if ination did

not solve these other cosmological �ne-tuning problems, the solution to the atness problem

alone would be enough reason to consider it seriously since there is no other known physical



mechanism that can solve the atness problem.

One may understand the FRW atness problem as due to the fact that there is no

symmetry that prefers at spatial geometries, and even if the spatial geometry was spatially

at, there is no symmetry to protect the atness. If one states the FRW atness problem

in those terms, it is easy to appreciate the problem we discuss. We will point out that

Lorentz invariance on our brane requires that the entire spacetime possess an approximate

SO(3; 1) isometry (not just our brane). Since bulk curvature would lead to SO(3; 1) violation

observed on our brane, in the absence of some symmetry there must be some cosmological

mechanism to atten the bulk.

The relation between bulk atness and Lorentz invariance is easier to appreciate if one

notes that even in four-dimensional FRW models, the reason we observe Lorentz invariance

today can be connected to the fact that our universe is at and old. One begins to understand

this by noting that the equivalence principle of general relativity, which protects Lorentz

invariance of the ultraviolet (UV) limit of a �eld theory living on a smooth Lorentzian

manifold, does not protect infrared (IR) physics from obtaining what appears to be Lorentz

violating terms. This statement is in some sense obvious from the fact that �eld solutions

generically may break the symmetry of the underlying spacetime (a type of spontaneous

symmetry breaking). In fact, the curvature of spacetime generated in a four-dimensional

FRW universe breaks the Lorentz isometry of the zero-energy vacuum spacetime. Let us see

this explicitly. If the FRW metric is written as usual as

ds2 = dt2 � a2(t)d~x2; (1)

we can write the action of a free scalar �eld in this background as

S =
Z
d4x a3(t) (@�)2 =

Z
d4x [1 + 3H0�t+ :::]

h
(@0�)

2 � (1� 2H0�t+ :::)(@i�)
2
i
; (2)

where H0 is the present (t = t0) expansion rate and �t � t� t0. The di�erent coeÆcients

of (@0�)2 and (@i�)2 signal Lorentz violation. Clearly if the IR cuto� for the �eld theory

is taken to be �IR � H0, then H0�t � 1, and one can work with a Lorentz invariant

�eld theory [7]. In other words, the �eld theory on the tangent space of the manifold is



Lorentz invariant only if the IR cuto� is taken to be larger than H0. Of course in this

four-dimensional FRW case this �eld theory is really only valid on large scales (small UV

energy cuto�), since the FRW metric is only valid on large scales during most of the history

of the universe.

The only reason we ever deduced Lorentz invariance in the �rst place is because the

spacetime curvature associated with the energy density in our universe is much smaller than

the energy scales associated with our physics experiments involving the standard model of

particle physics: we just can't probe energy scales smaller than H0 (a similar argument

applies to planetary curvature, etc.). The reason energy scales associated with our physics

experiments are small compared to the FRW spacetime curvature scale (the Hubble expan-

sion rate H0) is because the universe is old, i.e., the atness problem [8]. Since ination

solves the atness problem, we can then say that our ability to observe Lorentz invariance

today has much to do with the fact that ination made our universe at (neglecting any

unaddressable metaphysical issues such as the anthropic principle).

Extending the analogy to extra dimension scenarios is not straightforward, however, be-

cause we do not really have a standard time-dependent model of brane/bulk cosmology

including its \birth" [9]. What we �rst establish in the next section of this paper is that

departures from the SO(3; 1) isometry for the large scale higher dimensional background

geometry will result in Lorentz violations for any �eld living in the bulk [10]. We will �nd

that the nature of Lorentz violations from bulk curvature is signi�cantly di�erent from the

nature of Lorentz violations in a four-dimensional FRW universe. Namely, we will see that

in some cases, the Lorentz symmetry is never recovered as the IR cuto� is taken to be arbi-

trarily large, unlike in the 4-D FRW case. This means that the four-dimensional equivalence

principle does not necessarily result from a higher dimensional equivalence principle. This

is what we will call the \inequivalence principle." Hence, if we assume that the observed

four-dimensional gravitational theory is Lorentz invariant (obeys the equivalence principle)

to a high accuracy, say to scales of order H�1
0 , an explanation is required.

As in the 4-D FRW model, two general classes of explanations exist. One is that for

some reason the quantum gravitational dynamics is driven to initiate an SO(3; 1) invariant



universe, and the other is that a �eld theoretical dynamical mechanism exists to drive the

system to approximate SO(3; 1) invariance. The �rst explanation cannot be meaningfully

addressed because we do not know the fundamental uni�ed theory. Indeed, if such a mech-

anism existed, then that will most likely allow an alternative to ination for solving the

atness problem. We thus take the latter approach, and make the assumption that the

universe initially was in an SO(3; 1) isometry violating state, which is generic since there is

no symmetry to protect SO(3; 1) isometry. (For instance, N = 1 SUSY is compatible only

with SO(3; 2) and SO(3; 1) isometries, but is generically broken with the presence of matter

energy density.) Thus we will require spacetime expansion, which we will call bulk ination,

to eliminate the SO(3; 1) violating terms.

We �nd that in the most straightforward inationary scenarios, the warp factor does not

survive bulk ination. Furthermore, we point out that for the large, at, compact extra

dimension scenarios, ination at the e�ective �eld theory approximation cannot be used to

atten out any signi�cant SO(3; 1) violating curvature because that would force the initial

compact dimension size to be too small, i.e., smaller than the fundamental Planck length.

This latter point has been addressed to a certain extent in Ref. [11]. Finally, we �nd that

SO(3; 1) violating curvature terms in the bulk can be experimentally constrained.

The order of presentation will be as follows. We �rst discuss how apparent Lorentz

violations arise in e�ective �eld theories in a curved spacetime in higher dimensions. We

then discuss in detail why ination generically would be necessary in noncompact warped

extra dimension scenarios. Finally, we discuss the possibility of �nding evidence for extra

dimensions through experimental observation of Lorentz violations and conclude.

II. THE INEQUIVALENCE PRINCIPLE

It is well known that in four dimensions, the IR limit of any e�ective �eld theory is sen-

sitive to the background spacetime curvature, which generically induces Lorentz violations.

Due to the equivalence principle, this Lorentz violation e�ect generically vanishes in the limit

that the IR cuto� is taken to be large. However, what is not as well known (at least it is new



to us) is that for any single dimensionally reduced �eld, increasing the IR cuto� will not lead

to the recovery of Lorentz invariance if the SO(3; 1) violating curvature is due to warping

in the extra dimensions. Hence, SO(3; 1) violating curvatures from extra dimensions induce

a four-dimensional theory that violates the principle of equivalence. This is what we have

referred to as the inequivalence principle. Another way of stating the inequivalence principle

is that the equivalence principle of a higher dimensional gravitational �eld theory does not

necessarily guarantee that the equivalence principle will be manifest for the dimensionally

reduced e�ective �eld theory.

A perhaps noteworthy observation is that it is only an accident that we, as four-

dimensional low energy observers, discovered Lorentz invariance as a fundamental symmetry

of nature. If the total number spacetime dimensions is four and if we had been unlucky,

spacetime curvature would have prevented us from ever deducing Lorentz invariance until

our experiments reached an energy level above the curvature scale. As we will detail below,

the situation in the brane scenario could have been worse. The inequivalence principle tells

us that if we had been unlucky to be embedded in a higher dimensional spacetime with no

SO(3; 1) isometry, it would have been very diÆcult to deduce that gravitons obey Lorentz

invariance, even at short distances (short compared to the background curvature scale).

This would be true irrespective of the energy probed by experiments, even if the energy

were higher than the background curvature energy scale. This loss of Lorentz invariance in

the UV limit is a signature of extra dimensions; it cannot be reproduced with any purely

four-dimensional background curvature.

The loss of Lorentz invariance is connected to dimensional reduction. To see this, consider

a higher dimensional spacetime. Finding a four-dimensional e�ective �eld theory description

of a �eld propagating in higher dimensions usually requires introducing an in�nite number

of four-dimensional �elds (a \KK tower") and integrating over the coordinates of the extra

dimensions. Let us denote these four-dimensional �elds by Xn. The procedure for obtaining

a four-dimensional e�ective �eld theory preserves the isometries, and thus the e�ective

�eld theory for the Xn is Lorentz invariant if the underlying higher dimensional spacetime

possesses an SO(3; 1) isometry with respect to the four-dimensional coordinates of interest.



Now, what about the condition on the IR cuto�? An interesting feature of the four-

dimensional e�ective theory for Xn is that none of the individual kinetic terms for Xn will

recover Lorentz invariance even if one takes the IR cuto� to be large. This is because the

Lorentz invariant tangent space of the higher dimensional manifold is never four dimensional!

In other words, the IR cuto� scale for any single Xn (for �xed n) is constrained to be be less

than 1=L where L is the length scale of the extra dimensions, because 1=L is the UV cuto�

scale for Xn (the �eld theory has been coarse-grained over length scales of 1=L). One can

describe the propagation in a �ve-dimensional manifold up to resolution of �UV only when

all the �elds up to mass �UV > 1=L are taken together. However, each individual Xn never

recovers Lorentz invariance.

Hence, we deduce two useful suÆcient conditions for the existence of Lorentz violation

in the four-dimensional e�ective theory of a �eld propagating in higher dimensions. First,

there must be no SO(3; 1) isometry in D dimensions, and second, the coarse-graining length

scale (e�ective IR cuto�) must be much larger than the radius of curvature R: i.e., L� R.

We now present toy models to illustrate the nature of Lorentz violating terms induced

from extra dimensions. Consider a metric of the form

ds2 = A(t; UM)dt2 �B(t; UM)d~x2 +GMN (U
M)dUMdUN ; (3)

where UM are coordinates of the bulk and the U dependence of A and B makes the global

geometry nonfactorizable as in the model of Ref. [6]. Since we are interested in cosmological

solutions we have assumed that A and B are independent of the spatial coordinates of the

brane and only depend on t, the comoving time coordinate of our universe. Furthermore,

consider the situation in which we are interested in physics for energy scales much larger

than @t lnA and @t lnB. Then in the adiabatic approximation we can neglect the time

dependence of A and B and set the time variable to a particular value t0. Under these

conditions, our generic manifold is approximately described by

ds2 = A(UM) dt2 �B(UM) d~x2 +GMN(U
M ) dUMdUN ; (4)

where in general,

A(U) 6= B(U); (5)



because there is no fundamental symmetry imposing (or protecting) the condition A(U) =

B(U). This implies that there is no SO(3; 1) isometry generated by the Lorentz group acting

on the coordinates (t; ~x).

Although the Randall-Sundrum metric containing a single extra dimension with coordi-

nate u (ds2 = e�2bjuj(dt2�d~x2)�du2) has an SO(3; 1) isometry (A(u) = B(u)), the question

to address is why did the metric evolve to this form. Brane solutions in which the bulk is

not SO(3; 1) isometric were recently constructed in Ref. [12], where the metric is given by

ds2 = h(u) dt2 � u2d~x2 � h�1(u) du2; (6)

with h(u) = ��u2=6� �=u2, where � is a cosmological constant in the bulk and � is a free

constant parameter. If h(u) 6= u2, then this metric breaks the SO(3; 1) isometry [13].

Now consider a simple toy model that illustrates the breaking of the SO(3; 1) isometry.

Assume we live in �ve dimensions and the extra spatial dimension has the topology of S1=Z2

with the radius of S1 equal to L=�. Suppose the background stress energy is arranged to

give the line element

ds2 = dt2 � e�2bud~x2 � du2; (7)

where again, u is the extra dimension coordinate [14]. Note that this metric is not di�eo-

morphic to that written by Randall and Sundrum [6]; notably, it is not a conformally at

spacetime. It is a static version of the cosmological spacetime presented in Ref. [15].

Now suppose that a free bulk scalar �eld � lives in the background of this spacetime. We

will assume that its contribution to the vacuum energy has been �ne-tuned to zero (i.e., this

is not the bulk �eld determining the background geometry of the spacetime), and consider

what this �eld looks like to a four-dimensional observer living on our brane. The action for

this bulk scalar �eld is

�Sbulk =
Z
d5x

p
g
1

2
(@�)2; (8)

where g��(u) is the (4 + 1)-dimensional metric of Eq. (7). We can consider what a four-

dimensional observer will see by expanding this scalar �eld in a particular orthogonal basis

� =
X
m

Ym(~x; t)hm(u); (9)



where the hm satis�es

1p
g
@u[
p
g@uhn] = �m2

nhn; (10)

and the self-adjoint derivative condition implies

@uhmjbrane i = 0: (11)

The basis functions hn satisfying these conditions can be written down explicitly:

hn6=0 = Nne
3bu=2

�
2�n

3bL
cos

�
�n

L
u
�
� sin

�
�n

L
u
��

: (12)

If we insist on the normalization

Z
du e�3bu hnhm = Ænm; (13)

we have the normalization constant

N�1
n6=0 =

s
L

2

s
1 +

�
2�n

3bL

�2

: (14)

Putting this expansion into Eq. (8), we �nd the e�ective action (~r2 � P
i @

2
i )

�Sbulk =
Z
d4x

1

2
Y0
�
�@20 + �00

~r2 �m2
0

�
Y0

+
X
n6=0

2
4Z d4x Yn

�
�@20 + �nn ~r2 �m2

n

�
Yn +

X
m6=n

Ym�mn
~r2Yn

3
5 ; (15)

where we have de�ned an in�nite dimensional matrix

�rn �
Z
du e�buhm(u)hn(u) 6= Ærn (16)

which characterizes the Lorentz noncovariant structure of the theory. Note that for a �xed

index r and a given �eld Yr, only the o�-diagonal components of �rn seem to be responsible

for the Lorentz non-covariant structure, because for the diagonal component we can always

rescale the coordinates to obtain the usual covariant form. However, because the standard

model �elds con�ned to the brane reveals the \true geometry" of the underlying spacetime,

it is not true that the �eld rede�nition completely hides the apparent Lorentz violation even

for a given diagonal sector. For example, if r = 0 we can take x! x
p
�00 in the �rst line of

Eq. (15) to obtain

Sscaled
0 =

Z
d4x �

3=2
00

1

2
Y0
�
�@20 + ~r2 �m2

0

�
Y0; (17)



apparently recovering Lorentz invariance for what we will call the 00 sector.

It is manifest that two points that are a distance d apart (as measured by the standard

model physics of �elds con�ned to our brane) are seen to be only a distance d=
p
�00 apart

from the point of view of the e�ective four-dimensional �eld, which actually lives in higher

dimensions. Of course there is no global coordinate transformation that one can make to

have all diagonal nn sectors Lorentz covariant simultaneously. Hence, at least with the

o�-diagonal terms neglected, each �eld Yn lives in a di�erent apparent geometry; i.e., the

e�ective distance that each �eld sees through its propagator is di�erent even though the

\true" distance in spacetime as measured by the standard model �elds con�ned to the

brane is the same. The distance d=
p
�00 is what an observer would deduce from an \inverse-

square law" analysis, and hence we will refer to it as the \inverse-square distance." The

ratio of the inverse-square distance to the distance measured by �elds con�ned to the brane

is in this case just 1=
p
�00. The fact that the ratio is not unity is nothing more than a

consequence of the fact that the lightcone in the extra-dimensional spacetime is di�erent

from the lightcone of a �eld con�ned to the brane, as was discussed in Ref. [15]. In other

words, causal signals can take a shortcut through the extra dimensions to get to a point on

the brane that is farther than where a causal signal con�ned to the brane can go for a �xed

time. From a (3+1)-dimensional point of view, the higher dimensional signals seem acausal.

It is important to note that this noncovariant structure is independent of the basis chosen,

and there is no coordinate rede�nition nor �eld rede�nition that will truly restore the Lorentz

symmetry. Even more importantly, since the Lorentz violation structure is governed by the

quantity bL (which is independent of �IR, the IR cuto� of the 3+1 dimensional momenta),

increasing �IR does not lead to the recovery of Lorentz invariance for any one �eld Yn. Hence,

the inequivalence principle is manifest. As argued before, the fact that �mn 6= Æmn is a result

of the fact that the underlying higher dimensional spacetime does not possess an SO(3; 1)

isometry. Mathematically, this merely amounts to the fact that the partial di�erential

equations governing the modes are not separable in the chosen coordinate directions.

Let us now examine the magnitude of these e�ects. The magnitude of the Lorentz-

violating e�ects is characterized by the coeÆcients �ij. First note that in this model the



Lorentz violating e�ects associated with the zero mode are not very large, because 1 � �00 �
3. In particular, the distances are only scaled by d=

p
�00. However, since the scalar �eld

propagators behave approximately as the graviton propagator for Newton's law, one can

see that the \inverse-square" distance vs. luminosity distance comparisons can discriminate

such scalings [16]. We leave a more careful analysis of the observables to a future study.

However, in the last section, we will explicitly show one possible experimental observable

which is within the reach of upcoming gravitational experiments.

The e�ects for the higher mass mode can be extremely large, even if L�1 is much larger

than electroweak energy scale. For instance, if ebL � 1, we have

�11 � e2bL
29�2

18b3L3
; (18)

which will be much larger than unity. Moreover, it is not always possible to treat the mixing

of the zero-mode mass eigenstates with massive KK mass eigenstates as a perturbation

because the mixing with massive modes can be equally large if ebL is large, as can be seen

by

�01 � ebL=2
16�

(bL)2=3

s
2

3
: (19)

In general, the zero mode truncation of the e�ective �eld theory in the bL� 1 limit is not

valid because �mn is much greater than unity if bL is much greater than unity, and the �eld

theory must be considered from a higher dimensional point of view. This may be true even

though the nonzero modes (the zero mode is massless) can be quite massive since L�1 may

need to be large enough to hide the higher dimensional behavior of gravity. Explicitly, the

mass spectrum of the nonzero modes is given by

mn 6=0 =
1

2

s
9b2 +

�
2�n

L

�2

; (20)

which would naively justify decoupling if b or L�1 were suÆciently large. However, here in

general, the mass eigenstates will not be momentum eigenstates, and there does not seem

to be decoupling. What is clear, however, is that if we insist on a four-dimensional point of

view, we have a theory in which the �eld labeled by di�erent masses see a di�erent e�ective

geometry, i.e., the inverse-square distances corresponding to the same spacetime geometry

distance are di�erent for di�erent four-dimensional e�ective �elds.



Although the exact nature of the Lorentz violating e�ects characterized by �mn is model

dependent, its magnitude can be read o� from the metric of the form given in Eq. (3). It

is easy to show that in general whether �mn is greater than or less than unity is roughly

governed by the ratio

�mn � hBi
hAi ; (21)

where h� � �i denotes an average over the extra dimensions. Hence, for spacetimes with

hBi=hAi > 1 we have an \acausal" e�ective theory while for hBi=hAi < 1 , we have merely

the momentumnonconserving Lorentz violating e�ects with respect to the o�-diagonal terms

of �mn.

Note that the existence of Lorentz violation generalizes to higher spin �elds. Consider

the graviton �eld h�� , which is de�ned to be the zero mode of the metric perturbation

ds2 = A
�
(1 + h00)dt

2 �
�
B

A
Æij � hij

�
dxidxj

�
+GMNdU

MdUN ; (22)

where h�� only depends on (3 + 1)-dimensional coordinates. The graviton kinetic term will

contain a term

S 3
Z
dnx

p
AB3

p
G

1

4

h
A�1(@0h

��@0h��)�B�1(~rh�� � ~rh��)
i
; (23)

which is again Lorentz violating when integrated over the extra dimension coordinates U .

Again, the metric implied by measurements of the brane-con�ned �elds will be di�erent

from the constant metric obtained after integrating over U in Eq. (23).

III. A NEW FLATNESS PROBLEM

Since we have little control over the e�ective �eld theory in the context in which the

extra dimensions are compacti�ed to be Planck size, we will not discuss that scenario here.

However, in the case in which the extra dimensions are large and at [5] or in the case in

which the extra dimensions are warped and noncompact [6], we can ask in the context of an

e�ective �eld theory whether there may be a atness problem as outlined in the Introduction.

As we shall argue, in these large extra dimension scenarios there are additional atness



TABLE I: The analogy between the FRW atness problem and the extra-dimension atness

problem.

4D FRW Extra dimensions

no reason for initial spatial atness no reason for initial SO(3; 1) isometry

spatial curvature ! dynamical instability ?

observation: old age of the universe observation: approximate SO(3; 1) isometry

problem complications that did not arise in the four-dimensional FRW cosmology. In what

follows, we shall �rst identify the atness problem in the warped extra dimensions scenario

and then discuss the case of the large extra dimension scenario.

As discussed more fully in the previous section, a higher dimensional spacetime described

by Eqs. (4) and (5) implies that any dimensionally reduced e�ective theory, including gravity,

will generically violate Lorentz invariance. In the view of treating gravity as a theory of

vielbeins in Minkowski spacetime, this means that the VEV of the vielbeins spontaneously

break Lorentz invariance. Hence, in warped extra dimensions scenarios, it is crucial to

explain why there is an SO(3; 1) isometry in the extra dimensions to an accuracy that

allows four-dimensional gravity (or any other dimensionally reduced �eld) to be Lorentz

invariant [17]. Hence, in analogy to the FRW atness problem, if we assume that the bulk

�elds dimensionally reduced to four dimensions are observed to obey Lorentz invariance (as

the IR cuto� is taken to be arbitrarily large), we have an extra-dimensional atness problem.

This analogy is summarized in Table 1.

If a typical initial condition of early cosmology contains SO(3; 1) isometry violating curva-

ture, the extra dimensional atness problem is real and ination may be required to eliminate

it. Note that here we are making a crucial assumption that there is no fundamental reason

(such as fundamental symmetry arguments or dynamical arguments) to choose an SO(3; 1)

isometric manifold as the initial condition. Indeed, if there were such a mechanism, then

one may be able to modify it and utilize it to replace ination altogether.

Given that we use ination to solve the FRW atness problem, let's see what normal

ination would do to solve the bulk atness problem. Let's extend the toy model of the



previous section by allowing a brane scale factor a(t):

ds2 = dt2 � a2(t) e�2bu d~x2 � du2; (24)

where again, u is the extra dimension coordinate and our at brane is located at u = 0.

It is easy to see that no matter how much we inate our brane by arranging a(t) to grow

exponentially, we will not recover the SO(3; 1) isometry.

One possible resolution to this problem is to inate the u dimension. The diÆculty lies

in inating the extra dimensions to smooth out the SO(3; 1) invariance violating curvature

while preserving the large warping. To see this, introduce a bulk scale factor c(t) for the

extra dimension. The toy metric is then

ds2 = dt2 � a2(t) e�2bu d~x2 � c2(t) du2: (25)

Inating c(t) (\bulk ination") will render the curvature set by b harmless. One can see this

by making the coordinate transformation ~u = cu, in which case the metric becomes

ds2 =

"
1 �

�
_c

c

�2

~u2
#
dt2 � a2(t) e�2b~u=c d~x2 � d~u2 + 2

�
_c

c

�
~u d~u dt: (26)

Now imagine c inates by large amount, after which _c=c! 0 (or at least _c=c < _a=a). Then

the factor b=c, which sets the spatial curvature scale in the bulk, can be made arbitrarily

small while still recovering SO(3; 1) isometry. Of course the price one pays here is that

ination of the bulk has inated away the warp factor!

An obvious loophole in the argument thus far is the possibility of a hierarchy between

the Lorentz violating curvature and the warp factor curvature. Then one may be able to

inate away the Lorentz violating curvature without erasing the warp factor. For example,

if one complicates the toy metric a bit further and takes it to be

ds2 = e�2ku
h
dt2 � a2(t) e�2bu d~x2

i
� c2(t) du2 (27)

with k � b, then bulk ination may dilute away the curvature due to b while maintaining

the warp factor from k. The challenge then is to come up with a physical scenario with

a large hierarchy between k and b. Of course, there may be other solutions that involve



the bulk inating and then shrinking in such a way that the SO(3; 1) violating curvature is

removed, but the main point still stands: inationary model building has a new problem to

solve.

Finally, consider the large compact extra dimension scenarios [5] with r extra spatial

dimensions. Imagine that an SO(3; 1) violating metric of the form Eq. (25) has been inated

as in Eq. (26) to end with an acceptably at, compact extra dimension. Let us parameterize

such a metric as

ds2 = dt2 � a2(t)e�2bud~x2 � c2(t)ÆMNdU
MdUN (28)

where UM correspond to the compact extra dimensions where M runs through 4 to 3 + r.

If the extra dimensions described by the coordinates U are compact, then ination through

c(t) poses the danger of the compact dimensions being initially too small to be described

by an e�ective �eld theory. More speci�cally, let us de�ne the total expansion of the extra

dimensions between some initial time ti and today (t0) as

E =
c(t0)

c(ti)
=

b

H0

; (29)

where the second equality is required by the requirement that the curvature not violate

SO(3; 1) invariance out to scale of H�1
0 . Suppose the size of the extra dimensions is initially

li. After ination, the size of the extra dimensions is l0 = liE. Then since the four-

dimensional Planck scale requires lr0M
2+r � M2

P l where M is the r-dimensional Planck

scale, we �nd  
M2b

M2
P lH0

!1=r

M =
1

li
: (30)

If we require an e�ective �eld theory description to be valid by imposing l�1
i �M , we �nd

b � H0

�
MP l

M

�2

: (31)

This means that if we require that the fundamental Planck scaleM to beM � 1 TeV, we �nd

that the curvature in the bulk before bulk ination can be only very tiny, b � 10�1eV. Hence,

we �nd that for large compact extra dimensions, only very tiny curvatures can be smoothed

out by ination. This suggests that a non-quantum-gravitational theory of ination cannot

smooth away the bulk curvature, and most likely some fundamental symmetry must play a



role in initially setting the SO(3; 1) violating curvature to zero. A related discussion can be

found in Ref. [11].

Let us reiterate the main point of this section which is the main result of this paper.

For noncompact warped extra dimension scenarios, one must invoke a mechanism such as

ination to smooth out the SO(3; 1) isometry violating curvature to obtain a Lorentz in-

variant e�ective �eld theory. However, the diÆculty with this resolution is that in such an

inationary scenario, the bulk warp factor that one needs to localize gravity may be inated

away altogether. Hence, the new atness problem is to inate away the SO(3; 1) violating

curvature selectively while preserving a large warp factor. In the case of large compact extra

dimensions, we �nd that ination at the level of an e�ective �eld theory generically cannot

make the bulk at.

IV. CONCLUSION

We have shown that curvature in the bulk leads to an apparent breaking of Lorentz

symmetry with respect to an observer living on the brane observing a �eld propagating

in higher dimensions. Unlike the SO(3; 1) violation in the four-dimensional world due to

curvature, Lorentz violation in theories with �elds propagating in higher dimensions persists

as long as the spacetime does not possess an SO(3; 1) isometry, no matter how large of an

energy the four-dimensional e�ective �eld theory is probed. This is in contrast with what

is dictated by the equivalence principle in four dimensions. We called this apparent UV-

limit-persisting violation of four-dimensional equivalence principle for dimensionally reduced

theories the \inequivalence principle." Note that Lorentz violation for the dimensionally

reduced theory is true even when the brane has an SO(3; 1) isometry. Furthermore, the

mismatch between the brane isometry group and the full spacetime isometry group results in

an ambiguous geometrical picture from a four-dimensional empirical point of view regardless

of the symmetry group.

This implies a new atness problem for cosmological scenarios having large (possibly

noncompact) extra dimensions. For warped noncompact extra dimensions scenarios, the



problem is to come up with a mechanism to atten the SO(3; 1) violating wrinkles while

preserving the large warp factor necessary for graviton trapping. Ination generically helps

to smooth away the wrinkle, but it also eliminates the warp factor. For at compact large

extra dimensions scenarios, we demonstrated that ination at the e�ective �eld theory level

is not suÆcient to smooth away any signi�cant curvature in the bulk.

It is tempting to speculate that the �rst signatures for large extra dimensions may come

from deducing the existence of Lorentz violations in the early universe. This would be

possible only if the observable anomalies in the early universe arising from Lorentz violations

are suÆciently distinct from the anomalies arising from other e�ects. Indeed, since in most

popular scenarios only gravity and other extremely weakly interacting (with the SM �elds)

�elds propagate in the bulk, it may be diÆcult to observe the Lorentz violations with respect

to the zero modes of these �elds unless the violation is extreme.

One Lorentz violating observable characteristic of the inequivalence principle is the wave-

length independent deviation of signal propagation speed. For example, for the free scalar

�eld of Eq. (8) propagating in a �ve-dimensional background of Eq. (7), one can solve the

wave equation perturbatively, perturbing with the parameter bL where b characterized the

Lorentz violating curvature and L is the characteristic size of the extra dimension. One can

write one of the modes as

� � f(u)

a
e�iEkt ei

~k�~x; (32)

where

f = c0

"
1 + b~k2

 
u3

3
� Lu2

2

!#
; (33)

and

Ek =
�
1 +

1

2
bL
�
j~kj: (34)

This implies that the group velocity is

@Ek

@j~kj = 1 +
bL

2
; (35)

in agreement with Eq. (15) since there we have

@Ek

@j~kj =
p
�00: (36)



As we have argued before, the propagation speed of gravitational waves will be similar.

Hence, we conclude that one may be able to constrain the bulk-curvature violating SO(3; 1)

isometry by comparing the gravitational wave arrival time and the light arrival time.

Imagine measuring the time correlation of the arrival of the gravitational wave and light

pulses from a gamma-ray burst. Taking the gamma-ray burst to be at a distance D = 1000

Mpc � 1017 s, and assuming a resolution for the arrival times of the pulses of �t = 1 s, we

would be able to constrain the Lorentz violating curvature to be smaller than

bL

2
<

�t

D
= 10�17 (37)

if no time lag is detected.

In conclusion, any realistic cosmological model with extra dimensions must account for a

mechanism to generate approximate Lorentz symmetry for �elds in the bulk, if the dimen-

sionally reduced bulk �eld such as the graviton can be shown to be approximately Lorentz

invariant. If we are lucky, perhaps nature will give us a clue regarding the extra dimensions

through tests of Lorentz violations in the graviton sector and any other sector that may live

in extra dimensions.
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